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Existing instance segmentation methods have achieved impressive performance but still suffer from a
common dilemma: redundant representations (e.g., multiple boxes, grids, and anchor points) are inferred
for one instance, which leads to multiple duplicated predictions. Thus, mainstream methods usually rely
on a hand-designed non-maximum suppression (NMS) post-processing step to select the optimal predic-
tion result, consequently hindering end-to-end training. To address this issue, we propose a box-free and
NMS-free end-to-end instance segmentation framework, dubbed UniInst, which yields only one unique
representation for each instance. Specifically, we design an instance-aware one-to-one assignment
scheme, named Only Yield One Representation (OYOR). It dynamically assigns one unique representation
to each instance according to the matching quality between predictions and ground truths. Then, a novel
prediction re-ranking strategy is elegantly integrated into the framework to address the misalignment
between the classification score and mask quality, enabling the learned representation to be more dis-
criminative. With these techniques, our UniInst, the first FCN-based box-free and NMS-free end-to-end
instance segmentation framework, achieves competitive performance, e.g., 39.0 mask AP using
ResNet-50-FPN and 40.2 mask AP using ResNet-101-FPN on COCO test-dev. Moreover, the proposed
instance-aware method is robust to occlusion scenes because of non-dependent on box and NMS. It out-
performs common baselines by remarkable mask AP on the heavily-occluded OCHuman benchmark.
Code is available at https://github.com/b03505036/UniInst.

� 2022 Published by Elsevier B.V.
1. Introduction

Instance segmentation is a fundamental yet challenging task in
computer vision, which predicts a pixel-level mask and a semantic
category for each instance in an image. Owing to the success of
deep convolutional neural networks [39,43,16,5,31], instance seg-
mentation has achieved impressive progress with many well-
performing approaches [17,44,47]. Among them, one challenging
topic is how to represent instances. As illustrated in Fig. 1 (a),
(b), and (c), previous methods proposed to represent instances
mainly via three forms. (a) Region-of-Interest-based (RoI-based)
methods [17,22,4,23,33] represent instances by boxes. They first
employ an object detector to generate multiple bounding boxes
for each instance and then crop features of boxes by RoI-Align
[17] to predict instance masks. (b) SOLO [47] and SOLOv2 [48] rep-
resent instances through adjacent grids where the object locates.
Then, they propose instance masks by center locations on S � S
grids. (c) CondInst [44] represents instances by anchor points land-
ing in the center region of instances and predicts instance masks by
dynamic weights subjected to these anchor points.

Although the above methods have achieved impressive perfor-
mance, they still suffer from a challenging dilemma, wherein
redundant representations, e.g., multiple boxes, grids, or anchor
points, are assigned to one ground-truth instance (many-to-one
assignment). As a result, all of them resort to non-maximum sup-
pression (NMS) post-processing steps during inference, which is
unsuitable for occluded as well as crowded scenarios and hinders
the instance segmentation framework from end-to-end training.
When NMS is eliminated in mainstream instance segmentation
methods [17,47,48,44], results reported in Table 1 demonstrate
that it is difficult to achieve satisfying performance dependent on
the many-to-one assignment, e.g., 19.1 mask AP absolute drop on
CondInst [44]. One could intuitively address this issue by adding
a mask head on top of end-to-end detectors, e.g., DETR [2] and
DeFCN [46]. Although these alternatives can offer a modest perfor-
mance without the post-processing step (see Table 1), they are not
comparable to methods with the many-to-one assignment.
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Fig. 1. Comparisons of different instance representation forms. Previous methods represent instances in different ways, such as (a) Bounding boxes of detected instances [17],
(b) Adjacent grids where instances locate [47,48] or (c) Anchor points that hit the central region of instances [44]. During inference, (a), (b), and (c) produce redundant
representations and identify each instance by the NMS post-processing step. In our method, by contrast, (d) only one instance-aware unique point is yielded to one instance
for end-to-end prediction without detection and post-processing.

Table 1
Comparisons with common FCN baseline methods for instance segmentation on COCO val2017 split. Here, we adopt the ResNet-50-FPN backbone and 3� schedule for all models
except DETR. Mask R-CNN� is the improved Mask R-CNN by Detectron2 [50]. ’CondInst + DeFCN’ refers to replacing the base detector of CondInst with the end-to-end DeFCN, and
its pipeline shows in Fig. 3 (c). AP and AR refer to mask mean average precision and mean average recall, respectively.

Assignment types Representation forms Method AP AR

w/ NMS w/o NMS D w/ NMS w/o NMS D

Many-to-one Boxes Mask R-CNN� [17] 37.2 10.3 - 26.9 44.6 49.7 + 5.1
Grids SOLO [47] 35.8 17.3 - 18.5 48.2 49.2 + 1.0
Grids SOLOv2 [48] 37.6 17.9 - 19.7 49.9 50.8 + 0.9
Anchor Points CondInst [44] 37.5 18.1 - 19.4 48.7 52.2 + 3.5

One-to-one Queries DETR [2] — 31.9 — — — —
Boxes CondInst [44]+DeFCN [46] — 34.9 — — — —
Unique Points UniInst (ours) 38.5 38.3 -0.2 53.2 54.4 +1.2
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Additionally, they are extremely dependent on the object
detector and are not complete end-to-end instance segmentation
frameworks. To this end, one question may naturally arise: Could
a fully convolutional network achieve a competitive and complete
end-to-end instance segmentation framework?

In this paper, we attempt to answer this question from the per-
spective of assignment between representations and ground-truth
instances. We hereby propose a simple yet effective one-to-one
assignment, named Only Yield One Representation (OYOR), which
dynamically assigns representations according to the matching
quality between predictions and ground-truth instances. Specifi-
cally, as depicted in Fig. 1 (d), only one unique representation with
the highest matching quality is assigned as the positive sample to
one ground-truth instance in our method, while others are sup-
pressed effectively. The matching quality is evaluated by the clas-
sification confidence and the mask accuracy of each representation
simultaneously, thus the proposed OYOR is instance-aware.
Towards the unique representation of a ground-truth instance,
we employ the unique instance-aware point and the corresponding
dynamic weights to predict the mask of this instance. Therefore,
our OYOR does not acquire box-based information and post-
processing steps, which enables our framework to be box-free
and NMS-free.

Furthermore, existing methods [17,44] directly adopt predicted
classification scores as the unilateral ranking criterion to deter-
mine the final predictions in the inference stage. Consequently,
the network may infer one sub-optimal instance mask with a high
classification score but low mask quality as the prediction output.
To mitigate this issue, we design a prediction re-ranking strategy
to calibrate the ranking criterion to the product of classification
score and mask quality. In this way, the predicted mask takes the
instance quality into account, and the most discriminative and rep-
resentative prediction is therefore inferred for each instance by our
framework.

With proposed techniques, our complete end-to-end instance
segmentation framework, termed UniInst, can directly perform a
single mask prediction for each instance without procedures of
detection and post-processing. Experiments on COCO benchmark
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[25] show that our UniInst can achieve a competitive performance
(40.2 mask AP with ResNet-101-FPN backbone) against main-
stream methods. To further demonstrate its robustness and flexi-
bility for occlusion scenes, we conduct additional experiments on
the heavily-occluded OCHuman benchmark [54], where our
method outperforms CondInst [44] by a remarkable þ12:6 mask
AP.

Our main contributions can be summarized as follows:

� We propose an effective one-to-one assignment scheme to
prune redundant representations, equipping fully convolutional
networks (FCNs) with the ability to learn an instance-aware
representation for each instance uniquely in an end-to-end
manner.

� A prediction re-ranking strategy is elegantly integrated into the
end-to-end framework. It calibrates the ranking criterion with
mask quality and produces the most discriminative prediction
that simultaneously considers the classification score and mask
quality.

� Without relying on the detector and the post-processing step,
our end-to-end UniInst achieves competitive performance on
COCO test-dev2017, e.g., 39.0 mask AP with ResNet-50-FPN
backbone and 40.2 mask AP with ResNet-101-FPN backbone.
Enabled by the instance-aware representation, our UniInst
achieves superior performance (40.2 mask AP with ResNet-50-
FPN backbone) on OCHuman dataset that contains more occlu-
sion scenes.

2. Related Work

2.1. Instance Segmentation

Existing instance segmentation approaches can be roughly sep-
arated into two-stage and one-stage paradigms. Two-stage meth-
ods [17,28,22,4,23,7] first employ object detectors to generate
proposal boxes, then predict mask of each detected instance after
RoI-Align [17]. Typically, Mask R-CNN [17] extends Faster R-CNN
[38] by adding an extra mask head. Based on [17], Mask Scoring
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R-CNN [22] explicitly learns the quality of predicted masks. HTC
[4] further improves Cascade R-CNN [1] by interweaving box and
mask branches in a multi-stage cascade manner. PointRend [23]
adaptively selects points to refine boundary details for image seg-
mentation. One-stage methods [3,32,44,47–49,51,52] incorporate
mask prediction into a single-shot FCN without RoI cropping.
PolarMask [51] represents the mask by its contour in polar coordi-
nates and formulates the problem as distance regression. SOLO
[47] presents a box-free framework to map input images to full
instance masks. SOLOv2 [48] further decouples the mask predic-
tion into dynamic weights and convolutional features learning.
Similarly, CondInst [44] takes advantage of dynamic weights to
predict masks. Recently, Borderpointsmask [52] utilizes several
boundary points to represent an instance’s mask and boundary
box without detection. However, as mentioned above, these meth-
ods suffer from redundant representations inferred for each
instance, requiring a hand-crafted post-processing. In this paper,
we propose a fully end-to-end framework to directly perform a sin-
gle prediction for each instance with the proposed one-to-one
assignment rule.

2.2. Label Assignment

Label assignment refers to defining the positive and negative
samples. Generally, it can be summarized into two categories,
including the many-to-one assignment and the one-to-one assign-
ment. The many-to-one assignment, widely used in mainstream
object detectors [10,29,37,27,24,36,45,26,38], refers to assigning
many positive predictions for one ground-truth. Analogously, most
instance segmentation methods follow the similar idea. Mask R-
CNN [17] inherits multiple positive proposals generated from the
region proposal network, then adopts box NMS post-processing
for each instance. One-stage SOLO [47], SOLOv2 [48] and CondInst
[44] adopt the center sampling strategy [45] for label assignment,
where proposals in the center region of instance are considered as
positives. In inference, box or matrix NMS is used to suppress the
redundant mask predictions. Recently, several multi-stage refine-
ment detectors [2,57,42,19,8] present one-to-one assignment for
object detection, where only one positive sample is assigned to
one ground-truth. These methods perform single prediction for
each instance, achieving comparable performance, but suffering
from high computational overhead.

Different from these methods, we provide a new perspective to
prune redundant representations in instance segmentation.
Inspired by [46,41,21,20], we design a straightforward one-to-
one assignment to dynamically assign one unique representation
to one instance without post-processing. Besides, we design a
novel prediction re-ranking strategy to help produce the most dis-
criminative prediction.
3. Method

In this section, we first perform an empirical analysis of the
assignment scheme between representations and ground-truth
instances. Then, we present an instance-aware one-to-one assign-
ment scheme and a prediction re-ranking strategy, both methods
enabling an end-to-end instance segmentation framework termed
UniInst. Next, the overall pipeline of our UniInst, as illustrated in
Fig. 2, is introduced in detail. Finally, the main differences between
our UniInst and other mainstream pipelines are discussed.

3.1. Analysis on Representation Assignment

As shown in Fig. 1, previous methods [17,47,44] adopt a many-
to-one assignment scheme and subsequently require the NMS
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post-processing step to suppress redundant representations during
inference. To demonstrate the effect of assignment scheme on
instance segmentation, we conduct several ablation studies using
mainstream methods [17,47,44] on COCO dataset [25]. As shown
in Table 1, when discarding NMS, due to the false-positive
predictions generated from redundant representations, there is a
dramatic performance drop for methods equipped with the
many-to-one assignment scheme, e.g., 26.9 and 19.4 mask AP
absolute drops on Mask R-CNN and CondInst, respectively. There-
fore, it is challenging to achieve end-to-end learning through the
many-to-one assignment solely. In order to avoid the post-
processing step, an intuitive approach is to utilize the end-to-end
detectors. DETR [2], relied on a one-to-one assignment scheme,
can be equipped with a mask head on top of the decoder, which
achieves 31.9 mask AP without the post-processing step. We can
also replace the detector of CondInst [44] with the end-to-end
DeFCN [46], which performs 34.9 mask AP. Without NMS, the
above two substitute approaches surpass the many-to-one-based
methods. This phenomenon demonstrates the potentialities of
the one-to-one assignment scheme on the NMS-free framework.
However, these two alternatives depend on detection results to
predict instance masks, which is not a complete end-to-end
instance segmentation framework. More importantly, the informa-
tion from instance masks is exploited in the assignment
deficiently. To mitigate this issue, we propose an effective one-
to-one assignment scheme that dynamically assigns one unique
representation to each instance according to the matching quality
between predictions and ground-truth instances.

3.2. UniInst

3.2.1. Instance-aware One-to-one Assignment: OYOR
Let ŷ be the set of all predictions and y be the set of all ground

truth instances. N and G correspond to the number of predictions
and ground-truth instances, respectively, where N is typically
larger than G in dense prediction frameworks. To achieve a one-
to-one assignment between N and G, we formulate a simple yet
effective scheme, named Only Yield One Representation (OYOR).
It generates the optimal G-permutation of N predictions from the
perspective of bipartite matching. As POTO of DeFCN [46], OYOR
uses the global matching quality instead of foreground loss [2] as
the matching metric to alleviate optimization issues:

p̂ ¼ argmaxp2PN
G

XG
i¼1

Qmatch ŷp ið Þ; yi
� �

; ð1Þ

where p̂ denotes the optimal permutation with the highest quality
in all permutationsPN

G . Qmatch ŷp ið Þ; yi
� �

is a pair-wise matching qual-
ity of the p ið Þ-th prediction ŷp ið Þ with the i-th ground truth yi. In
detail, the i-th ground truth can be seen as yi ¼ ci;mið Þ, where ci
and mi denote its target category and ground-truth mask,
respectively. For the p ið Þ-th prediction ŷp ið Þ ¼ p̂p ið Þ; m̂p ið Þ

� �
; p̂p ið Þ and

m̂p ið Þ refer to its predicted classification scores and mask,
respectively. The matching quality is defined by the weighted
geometric mean between the classification score and the mask
accuracy:

Qmatch ŷp ið Þ; yi
� � ¼ I p ið Þ2Wif g � p̂p ið Þ cið Þ1�a � Dice m̂p ið Þ;mi

� �a
; ð2Þ

where a 2 0;1½ � is a hyper-parameter that adjusts the relative
importance between the classification score and the mask accuracy.
a ¼ 0:9 is adopted by default, and more ablation studies are pro-
vided in Table 4. Wi represents enabled prediction candidates by
the widely used spatial prior [35,27,45,9]. The proposed OYOR
adopts the center sampling strategy [45] to improve matching
efficiency, in which only predictions hit in the central region of



Fig. 2. The diagram of the proposed UniInst. C3 to C5 are the feature maps from the backbone network. P3 to P7 are the feature maps from FPN [26], where the resolution of Pi

is 2i times lower than that of the input. Fmask has the same resolution as P3, which is appended relative coordinates and subsequently input into the mask head. The orange
dashed heads are repeatedly applied on P3 to P7, where the Classification, Re-ranking (Section 3.2.2), and Controller branches predict the class probability, mask IoU, and
dynamic parameters, respectively. S equals the total number of parameters in the mask FCN head. ‘OYOR’ indicates the proposed instance-aware one-to-one assignment
scheme that enables entirely end-to-end instance segmentation (Section 3.2.1). The purple dashed lines are used to highlight the additional operation in the training stage,
which are abandoned in the inference stage.
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ground-truth masks are taken into account. The central region is
determined by the centroid of instance masks instead of the box
center as POTO. Note that the spatial prior used here only determi-
nes prediction candidates, not positive or negative samples. p̂p ið Þ cið Þ
is the predicted classification score of the target class ci. Different
from the detection-oriented POTO that utilizes box-based IoU as a
quality metric, our OYOR is devised explicitly for the instance seg-
mentation task. Thus, to describe the mask from a finer level, we
adopt the Dice similarity coefficient [34] between predicted mask
m̂p ið Þ and the ground-truth maskmi as the mask accuracy. The expli-
cit form of the Dice similarity coefficient is given below:

Dice m̂p ið Þ;mi
� � ¼ 2 � jm̂p ið Þ \mij

jm̂p ið Þj þ jmij þ �
; ð3Þ

in which � is 1� 10�5 by default. jm̂p ið Þ \mij refers to the intersec-

tion between m̂p ið Þ and mi, calculated as
Ph�w

j¼1 m̂p ið Þ;j �mi;j where h

and w is the height and width of the mask. jm̂p ið Þj is calculated asPh�w
j¼1 m̂2

p ið Þ;j. jmij has the same routine.
The Hungarian algorithm [40,46,2] can rapidly calculate the

best permutation p̂ with the highest matching quality, namely
the optimal one-to-one assignment, wherein the matching quality
Qmatch �ð Þ leverages the spatial prior, classification score, and mask
accuracy simultaneously. As a result, the proposed OYOR assigns
a unique instance-aware representation for each ground truth
(see Fig. 6). The computational complexity of the Hungarian
algorithm is O NGð Þ for an input image with N predictions and G
ground-truth instances. Note that N is acceptable because
prediction candidates are limited by the spatial prior. Additionally,
our OYOR only works during training and does not affect inference
speed at all.

3.2.2. Prediction Re-ranking Strategy
To date, most instance segmentation methods directly adopt

classification scores as a sole criterion for ranking predictions dur-
ing inference. This means that output predictions are only deter-
mined by elements with top classification scores. However,
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classification response only serves for distinguishing the semantic
category of proposals and is not aware of the actual mask quality.
In this case, the network may assign one sub-optimal prediction
with high classification scores but low mask quality as the unique
representation, thus resulting in a drop in performance.

To mitigate this issue, we propose a novel prediction re-ranking
strategy to calibrate the ranking criterion with mask quality.
Specifically, the mask Intersection-over-Union (IoU) is utilized to
describe the quality of mask predictions. As shown in Fig. 2, a com-
pact re-ranking head is introduced to regress the predicted mask
quality at all locations across different FPN [26] levels. During
training, we take the mask IoU between the predicted instance
mask m̂p ið Þ and its matched ground-truth mask mi, denoted as
IoU m̂p ið Þ;mi

� �
, as the target of the re-ranking head. As formulated

in Eq. 4, the re-ranking loss Lrank is only computed for predictions
within the enabled candidate Wi, and L1 loss is used to supervise
the regressed IoUs.

Lrank ¼ I p ið Þ2Wif g � kdIoUp ið Þ � IoU m̂p ið Þ;mi
� �k1; ð4Þ

where dIoUp ið Þ refers to the predicted mask IoU for the p ið Þ-th pre-
dicted mask. During inference, once we obtain the predicted IoUs,
all instance predictions are properly re-ranked by multiplying the
predicted mask IoUs and classification scores. Then, the re-ranked
top predictions are output as final predictions. To this end, our re-
ranking strategy ensures only the most discriminative and repre-
sentative prediction will be inferred for each instance.

The proposed re-ranking head comprises a single 3� 3 convolu-
tional layer (stride = 1). Its computational complexity is

O HiWiK
2CinCout

� �
, where Hi and Wi are the height and width of

feature maps in the i-th head, respectively. The kernel size K equals
3. The number of input channels Cin and output channels Cout

equals 256 and 1, respectively. In particular, the regression head
(Cout ¼ 4) is removed in UniInst because the proposed OYOR takes
full advantage of the instance information. Thus, compared with
CondInst [44], we can reduce the computational complexity during
inference.
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3.2.3. Framework
The proposed UniInst is developed based on the CondInst [44]

without center-ness and box regression branches, and further
improved with the proposed instance-aware OYOR scheme and
prediction re-ranking strategy. The overall architecture is depicted
in Fig. 2.

Backbone and Head. Generally, we adopt the ResNet-50-FPN
and ResNet-101-FPN [16,56] as main backbones. The Feature Pyra-
mid Network (FPN) outputs multi-scale feature maps P3; . . . ; P7f g
where the resolution of Pi is 2i times lower than that of the input.
For the head network, we remove box regression and center-ness
branches of CondInst [44] because our UniInst attends to instance
comprehensively. The head consists of parallel classification, re-
ranking, and controller branches, which predict the classification
probability, mask IoU, and dynamic parameters over all positions
per multi-scale feature maps, respectively. As CondInst [44], the
features from FPN (denoted as Fmask) are appended with relative
coordinates and submitted to the Mask FCN head. For candidates
determined by spatial prior, their corresponding dynamic weights
are transferred into the Mask FCN head to predict masks. While
assigning samples to each ground truth, candidate predictions
from center sampling are selected by the OYOR according to clas-
sification scores and mask accuracy. Additionally, we adopt 3D
Max Filtering (3DMF) [46] to improve the convolution discrim-
inability in local region (related ablation study is given in Table 5).

Overall Losses. Although hybrid loss functions have been
applied for different purposes in recent works [12,13], we adopt
the multi-task losses as:

L ¼ kcls � Lcls þ kmask � Lmask þ krank � Lrank þ kaux � Laux; ð5Þ

where classification loss Lcls and mask loss Lmask are identical to [44].
Lrank is introduced in Eq. 4. Laux [46] indicates the many-to-one
assignment auxiliary loss. It is introduced to provide adequate
supervision and enhance feature learning. In our UniInst, one
ground truth only corresponds to one unique representation, which
leads to less supervision for training. To cope with this, we adopt
center sampling [45] with a slightly modified many-to-one assign-
ment. Concretely, we first compute the matching quality for each
position and take positions with top-9 quality as candidates in each
FPN level. Then, candidates whose quality over the average quality
are assigned as positive, and Focal loss [27] is employed for their
supervision. Note that the auxiliary loss adopted here are not nec-
essary for our overall framework, only for enhancing feature learn-
ing. For simplicity, this auxiliary loss is adopted by default in the
proposed UniInst, and related ablation studies are elaborated in
Table 6. kcls ¼ 1; kmask ¼ 1; krank ¼ 1, and kaux ¼ 1 are balance weights
for Lcls; Lmask; Lrank, and Laux, respectively.

Pipeline. We design the pipeline of instance segmentation into
a whole end-to-end style. As shown in Fig. 3, Mask R-CNN [17] and
CondInst [44] use a detector as a tool to identify instances. Thus,
they are not only limited to the many-to-one assignments of the
detector but also fail to use semantic level information to judge a
positive sample. Other works, e.g., SOLO [47] and SOLOv2 [48], suc-
ceed in reaching comparable results without the detector, but they
are still stuck into detection style assignment. Specifically, their
pipelines do not utilize semantic level information to assign sam-
ples instead of grid center as multiple coarse assignments. Fig. 3
(c) shows a simple end-to-end instance segmentation approach
by straightforwardly integrating the DeFCN [46] into the CondInst
[44]. The assignment mechanism is POTO [46] that depends
heavily on box-based information, including box center in
center-sampling [45] and box-based IoU in judging instance qual-
ity (correspond to the first and third terms in Eq. 2, respectively). In
contrast, the proposed OYOR utilize the centroid of instance masks
to determine the center-sampling area and exploit the mask-based
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Dice IoU as a quality metric, which entirely depends on informa-
tion from the fine-grained instance mask. As a result, the UniInst
achieves a streamlined box-free and NMS-free pipeline. The mask
directly comes when an image passes our UniInst, as shown in
Fig. 3 (d).
4. Experiments

In this section, we evaluate UniInst on COCO benchmark [25],
along with thorough comparisons and extensive ablation studies.
To emphasize the robustness and flexibility of our method, we fur-
ther conduct experiments on OCHuman [54], which contains more
occluded and crowded scenes.

4.1. Datasets

COCO: COCO dataset [25] contains 118 K images for training,
5 K images for validation and 20 K images for testing, involving
80 object categories with instance-level segmentation annotations.
In this paper, we perform most of comparisons and ablations on
COCO dataset. All models are trained on train2017 split, evaluated
on val2017 split for ablation studies, and benchmarked on test-
dev2017 split to compare with other methods.

OCHuman: To further illustrate the effectiveness of UniInst in
complex scenarios, i.e., occluded and crowded scenes, we perform
test experiments on OCHuman [54], which is the most challenging
dataset related to heavily-occluded humans. We selected 1761
accurately labeled images from OCHuman as a new benchmark,
since the original dataset contains serious instances of missing
annotations. Table 2 lists the ‘instance density’ of different data-
sets, which shows that OCHuman contains more occluded and
crowded scenes than COCO Person [25], thus posing a big challenge
for duplicate removal.

4.2. Implementation Details

Our network is developed based on [44]. Except for the new re-
ranking head, all hyper-parameters are inherited from [45].
ResNet-50 and ResNet-101 [16] with FPN [26] are used as back-
bones. For a fair comparison, ResNet-50 and ResNet-101 are initial-
ized by weights pre-trained on ImageNet and other new layers are
initialized as [44]. Following [17,32], input images are resized such
that the shorter side is in [640, 800] pixels and the longer side is
less or equal to 1333 pixels during training. During inference, the
shorter side is set to 800 pixels. Following [17], we train our mod-
els over 8 GPUs using stochastic gradient descent (SGD) with a
mini-batch of 16 images (2 images per GPU) and an initial learning
rate of 0.01. To evaluate on COCO test-dev, we train all models for
540 K iterations (standard 6� schedule), and the learning rate is
reduced by a factor of 0.1 and 0.001 at iterations 480 K and
520 K, respectively. Unless otherwise stated, for ablation studies,
we train all models for 270 K iterations (standard 3� schedule),
and the learning rate is reduced at iterations 210 K and 250 K.

4.3. Results on COCO

We evaluate our UniInst with different backbones on COCO [25]
dataset and compare it against mainstream methods. Table 3
shows that our UniInst obtains 39.0 mask AP and 40.2 mask AP
with ResNet-50-FPN and ResNet-101-FPN backbones, respectively,
achieving competitive performance against mainstream box-based
and box-free methods. With ResNet-50-FPN, our UniInst outper-
forms the box-based Mask R-CNN and CondInst by þ1:5 and
þ1:2 mask AP, respectively. Compared with the box-free SOLO
and SOLOv2, our UniInst obtains þ2:2 and þ0:2 mask AP gains,



Fig. 3. Differences between our UniInst and mainstream instance segmentation methods in pipeline design.

Table 2
Statistics of instance density on COCO Person [25] and OCHuman [54]. The threshold
for per image overlap statistics is ground-truth box IoU greater than 0:5.

Datasets Images Overlapped instances/image

COCO Person [25] 2693 0.0204
OCHuman [54] 1761 0.6417
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respectively. The UniInst also surpasses the query-based methods
[55] þ0:6 mask AP. When based on the ResNet-101-FPN, similar
performances are achieved by the proposed UniInst. Fig. 4 (a)
shows some qualitative comparisons with the Mask R-CNN [17],
SOLO [47], and CondInst [44]. It demonstrate that our UniInst
performs a better segmentation for instances than other typical
Table 3
Comparisons with state-of-the-art methods for the instance segmentation task on COCO tes
improved by Detectron2 [50]. R-50 and R-101 denote ResNet-50 and ResNet-101, respect

Method Backbone Sched. AP AP50

Box-based:
Mask R-CNN [17] R-50-FPN 1x 34.6 56.5
Mask R-CNN� [50] R-50-FPN 6x 37.5 59.3
TensorMask [6] R-50-FPN 6x 35.4 57.2
BlendMask [3] R-50-FPN 3x 37.8 58.8
Cascade Mask R-CNN [1] R-50-FPN 3x 36.9 58.6
HTC [4] R-50-FPN 3x 38.4 60.0
CondInst [44] R-50-FPN 3x 37.8 59.1
CondInst [44] R-50-FPN 6x 36.6 57.4

Box-free:
SOLO [47] R-50-FPN 6x 36.8 58.6
SOLOv2 [48] R-50-FPN 6x 38.8 59.9
K-Net (kernel-based) [55] R-50-FPN 3x 38.4 61.2
UniInst (NMS-free, ours) R-50-FPN 6x 39.0 59.2

Box-based:
Mask R-CNN [17] R-101-FPN 1x 35.7 58.0
Mask R-CNN� [50] R-101-FPN 6x 38.8 60.9
TensorMask [6] R-101-FPN 6x 37.1 59.3
BlendMask [3] R-101-FPN 6x 38.4 60.7
Cascade Mask R-CNN [1] R-101-FPN 3x 38.4 60.2
HTC [4] R-101-FPN 3x 39.7 61.8
CondInst [44] R-101-FPN 3x 39.1 60.9

Box-free:
PolarMask [51] R-101-FPN 6x 30.4 51.9
SOLO [47] R-101-FPN 6x 37.8 59.5
SOLOv2 [48] R-101-FPN 6x 39.7 60.7
CenterMask [49] H-104 10.5x 34.5 56.1
BorderPointsMask [52] R-101-FPN 1x 35.0 56.5
K-Net (kernel-based) [55] R-101-FPN 3x 40.1 62.8
UniInst (NMS-free, ours) R-101-FPN 6x 40.2 61.0
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methods, especially for dense crowds. More qualitative results on
COCO dataset are shown in Fig. 7.

4.4. Ablation Studies

4.4.1. Instance-aware One-to-one Assignment
Representation Assignment. To demonstrate the effect of rep-

resentation assignment on discarding NMS, we conduct several
ablation studies for mainstream methods [17,47,44]. As shown in
Table 1 and Fig. 4(a), these methods are extremely sensitive to
NMS. When discarding NMS, there is a dramatic drop in perfor-
mance, e:g., 19.4 mask AP absolute drop for CondInst [44]. In con-
trast, our method only shows a very slight decrease (0.2 mask AP)
and still outperforms NMS-based methods, which strongly
t-dev2017. ’Sched.’ refers to the learning schedule. Mask R-CNN�means the model that
ively. H-104 denotes Hourglass-104.

AP75 APS APM APL Publication

36.6 15.4 36.3 49.7 ICCV 2017
40.2 21.1 39.6 48.3 —
37.3 16.3 36.8 49.3 ICCV 2019
40.3 18.8 40.9 53.6 CVPR 2020
39.7 19.6 39.3 48.8 TIPAMI 2021
41.5 20.4 40.7 51.2 CVPR 2019
40.5 21.0 40.3 48.7 TIPAMI 2022
39.0 18.8 39.3 47.9 TIPAMI 2022

39.0 15.9 39.5 52.1 ECCV 2020
41.7 16.5 41.7 52.6 NIPS 2020
40.9 17.4 40.7 56.2 NIPS 2021
42.2 18.6 41.1 54.4 Neurocomputing 2022

37.8 15.5 38.1 52.4 ICCV 2017
41.9 21.8 41.4 50.5 —
39.4 17.4 39.1 51.6 ICCV 2019
41.3 18.2 41.5 53.5 CVPR 2020
41.4 20.2 41.0 50.6 TIPAMI 2021
43.1 21.0 42.2 53.5 CVPR 2019
42.0 21.5 41.7 50.9 TIPAMI 2022

31.0 13.4 32.4 42.8 CVPR 2020
40.4 16.4 40.6 54.2 ECCV 2020
42.9 17.3 42.9 57.4 NIPS 2020
36.3 16.3 37.4 48.4 ECCV 2020
37.1 17.1 37.4 48.6 Neurocomputing 2022
43.1 18.7 42.7 58.8 NIPS 2021
43.6 19.4 42.8 55.9 Neurocomputing 2022



Fig. 4. Qualitative comparisons with other methods. We compare the proposed UniInst against Mask R-CNN [17], SOLO [47], and CondInst [44] on (a) COCO val2017 (left) and
(b) OCHuman (right). Red boxes mark the areas that need to be focused on, where UniInst performs a high-quality instance segmentation, especially for scenes with occlusion.

Table 4
Performance of UniInst with different configurations of a on COCO val2017 split.

a AP AP50 AP75

0.0 33.5 53.5 35.4
0.2 33.8 54.0 35.4
0.4 34.4 54.6 36.6
0.6 36.1 56.7 38.1
0.8 37.1 57.8 39.3
0.9 37.9 58.0 40.9
1.0 11.8 17.2 12.8

Y. Ou, R. Yang, L. Ma et al. Neurocomputing 514 (2022) 551–562
demonstrates that our end-to-end framework has much fewer
redundant representations than other methods.

Classification vs. Mask Accuracy. The hyper-parameter a in Eq.
2 controls the ratio of mask accuracy and classification scores. As
reported in Table 4, when a is 1, the gap with NMS is huge due
to the misalignment between classification and mask prediction.
When a is 0, the assignment scheme only relies on the predicted
classification scores. In this case, the gap is considerably narrowed,
but the overall performance is still not satisfactory. In contrast,
with a proper fusion of classification and mask accuracy
(a ¼ 0:9), the performance is remarkably improved.

Pipeline Comparison. To further demonstrate overall improve-
ment against DeFCN [46], we apply the concept of DeFCN directly
to the instance segmentation domain. In Table 1, ‘CondInst
+ DeFCN’ means that we displace the detector of CondInst with
DeFCN [46], then following all implementations, including POTO
assignment, 3D Max filter (3DMF), etc. However, this implementa-
tion still relies on a detector and exploits instance information
Table 5
Ablation for 3DMF [46], center-ness [45], and our prediction re-ranking strategy on
COCO val2017 split. All models are based on the ResNet-50-FPN backbone and trained
3� learning schedule on COCO train2017 split.

3DMF center-ness re-ranking AP AP50 AP75

- - - 35.6 56.0 38.2
U - - 36.4 57.2 39.0
- U - 33.5 51.7 36.0
- - U 36.8 56.2 39.6
U - U 37.9 58.0 40.9
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inadequately. In comparison, our UniInst leverages instance prop-
erties and achieves higher mask AP than it (38.3 vs. 34.9 mask AP
on COCO val2017 split).

4.4.2. Prediction Re-Ranking Strategy
We evaluate the effect of the proposed prediction re-ranking

strategy and compare it with the 3DMF [46] and center-ness
branch [45] in Table 5. The prediction re-ranking strategy and
3DMF bring þ1:2 and þ0:8 mask AP, respectively, while
center-ness brings negative results (�1:1 mask AP). Note that
improvements brought by the prediction re-ranking strategy are
orthogonal with 3DMF. The proposed prediction re-ranking
strategy still improves the performance by þ1:3 mask AP when
equipping with the 3DMF. Since it suppresses sub-optimal
predictions with high classification scores but low mask accuracy,
the final predictions aware of semantic categories and mask
accuracy is achieved.

We further visualize the classification scores during inference.
As shown in Fig. 5, ranking with sole classification scores yields
multiple predictions for single instance. These predictions are
highly activated but have comparable scores with the most dis-
criminative one. In this case, sub-optimal predictions with low
mask quality are inferred. By contrast, when re-ranked by the pre-
dicted mask IoUs, these sub-optimal predictions are effectively
suppressed, only predictions with high classification scores and
mask quality are activated. As illustrated in Fig. 5 (b), the learned
feature is much sharper and discriminative.

4.4.3. Auxiliary Loss
We perform ablation studies to analyze the effect of the auxil-

iary loss adopted for optimization in Table 6. Without this auxiliary
loss, our approach works reasonably well, in which it still delivers a
competitive performance (37.1 mask AP) against mainstream
methods with NMS. This performance indicates that the auxiliary
loss is not necessary for the overall framework, but it can be ben-
eficial for enhancing feature learning. We default this auxiliary loss
to achieve better performance during training.

4.4.4. Qualitative Visualization for the Unique Point
As shown in Fig. 6, we compare qualitative results of final

predictions between CondInst [44] and our UniInst. The main



Table 6
Ablation for auxiliary loss on COCO val2017 split. ’aux’ refers to the auxiliary loss.

Method AP AP50 AP75

UniInst w/o aux 37.1 56.9 40.1
UniInst w/ aux 37.9 58.0 40.9

Fig. 5. Visualization of the predicted classification scores w/ and w/o the prediction
re-ranking strategy on COCO val2017 split, shown in column (a) and (b),
respectively.
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differences are: 1) CondInst [44] follows the many-to-one assign-
ment and NMS post-processing paradigm, while UniInst adopts
the proposed instance-aware one-to-one assignment without any
post-processing. 2) CondInst [44] utilizes a center-ness branch to
assist learning salient positions close to instance center, while Uni-
Inst uses the prediction re-ranking strategy to dynamically find the
most discriminative point for each instance. Therefore, CondInst
leverages NMS to find the best prediction that tends to lie in the
grid point closest to ground-truth box center, but may fall out of
instance, as the laptop in Fig. 6. In contrast, the unique point from
Fig. 6. Qualitative results of final predictions from CondInst [44] and our UniInst with
rectangle of the instance mask, where the dark point is the location of the best represe
propose instance. By contrast, our UniInst utilize the instance-aware point to propose in

558
our UniInst (w/o NMS) exactly lies in the most discriminative
region of instances, e:g., inside of human body or laptop. It reveals
that our UniInst is able to yield only one instance-aware unique
representation for each instance without post-processing. Further-
more, we conduct the ablation study for the center-ness branch. As
shown in Table 5, a drop result demonstrates that the strong con-
straint of the center-ness is unsuitable for our instance-aware
framework.
4.5. Results on OCHuman

To further illustrate the effect of instance-aware assignment
(OYOR) and NMS-free from our UniInst, we perform experiments
on complex OCHuman benchmark [54], which is the most chal-
lenging dataset related to heavily-occluded human. Following the
same evaluation protocol in [54], our model is trained on general
COCO train2017 split, and tested on OCHuman to evaluate its
robustness instead of training on only occlusion cases. Table 7
demonstrates that our UniInst shows great advantage in occluded
scenes, outperforming other mainstream methods by remarkable
mask APs, e:g., 6.4 mask AP absolute gains over CondInst [44].
Moreover, Fig. 4 (b) illustrates the qualitative comparisons on
OCHuman [54], where our UniInst obtains more accurate segmen-
tation maps than other methods that fail to segment occluded
instances. For example, the Mask R-CNN and SOLO are challenging
to distinguish between two occluded persons. On the contrary, our
UniInst can identify occluded persons obviously because of the
instance-aware assignment and NMS-free framework. More
qualitative results are shown in Fig. 8.
4.6. Speed Analysis

To demonstrate the practicality of our UniInst, we measure its
efficiency and compare it with typical instance segmentation
methods under the same conditions in Table 8. The proposed Uni-
Inst takes 47.5 ms to infer one image and process � 21 images per
second (� 21 FPS). Its speed and accuracy gain the upper hand
against Mask R-CNN� [50], Cascade Mask R-CNN [1] and SOLOv2
[48].
the ResNet-50-FPN backbone on COCO val2017 split. The dashed box is the outer
ntation point for the instance. CondInst tends to use the center point of the box to
stance.



Fig. 7. More visualization of our UniInst with the ResNet-50-FPN backbone on COCO val2017 split.

Table 7
Comparisons with common FCN baseline methods for instance segmentation on OCHuman benchmark. Here, we adopt the 3� learning schedule (36 epochs) and ResNet-50-FPN
backbone for all models. AR denotes the mean average recall.

Method AP AP50 AP75 AR

Mask R-CNN� [50] 26.6 65.9 16.9 40.5
SOLO [47] 37.5 76.2 32.7 53.1
CondInst [44] 31.8 69.9 25.6 47.6
UniInst 40.2 74.2 38.9 55.8
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5. Discussion

In this paper, we show that a fully convolutional network could
achieve a competitive and complete end-to-end instance segmen-
tation framework from the perspective of assignment. Neverthe-
less, there is still room for improvement in the future. Firstly,
results in Table 3 illustrate that the proposed UniInst struggles
with segmenting small instances. Future research should be
devoted to the small instances segmentation from aspects of
designing loss and assigning samples for small instances. Secondly,
each loss contributes equally to the overall loss in Eq. 5. Adjusting
the loss weights may affect the final results, but it is not the pri-
mary concern of this work. The AutoML [18] can be utilized to
search for the best loss weights in the future. Additionally, time
consumption from the convolutional and activation layers can be
decreased by converting the model to half-precision or TensorRT
format. However, the time spent on NMS post-processing, at least
559
� 2 ms, cannot be reduced. Future work should pay more attention
to the UniInst conversion and deployment. As an extension, the
proposed approach can be improved by the Transformer-based
backbone [30,53] and compared with the performance of a capsule
network-based approach [11,14,15].

6. Conclusion

We have presented a novel end-to-end instance segmentation
framework, UniInst, based on the fully convolutional network.
With the proposed instance-aware one-to-one assignment scheme
(OYOR) and the prediction re-ranking strategy, our box-free and
NMS-free UniInst can yield the unique instance-aware point for
each instance, thereby predicting a unique mask for each instance
without the post-processing step. Extensive experiments on COCO
benchmark demonstrate that our approach achieves effective and
competitive performance against mainstream methods. Moreover,



Fig. 8. More visualization of our UniInst with the ResNet-50-FPN backbone on OCHuman dataset.

Table 8
Comparison of inference speed. All methods are based on ResNet-50-FPN backbone.
The input size is same as the inference phase (provided in Section 4.2). The inference
speed is measured on a single V100 GPU with 1 image per batch. AP refers the mask
AP on COCO test-dev2017 split. The training schedule is the same as Table 3.

Method AP FPS (img=s) " Inf time (ms=img) #
Mask R-CNN� [50] 37.5 17.5 57.1
Cascade Mask R-CNN [1] 36.9 10.3 97.1
SOLOv2 [48] 38.8 18.5 54.0
CondInst [44] 37.8 20.4 49.0
UniInst (ours) 39.0 21.1 47.5
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the proposed method is more robust to occlusion scenes, showing
a great advantage on the heavily-occluded OCHuman benchmark.
We wish the UniInst to pave the way for future research on the
FCN-based end-to-end instance segmentation framework.
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