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Abstract. The vanilla self-attention mechanism inherently relies on pre-
defined and steadfast computational dimensions. Such inflexibility re-
stricts it from possessing context-oriented generalization that can bring
more contextual cues and global representations. To mitigate this is-
sue, we propose a Scalable Self-Attention (SSA) mechanism that lever-
ages two scaling factors to release dimensions of query, key, and value
matrices while unbinding them with the input. This scalability fetches
context-oriented generalization and enhances object sensitivity, which
pushes the whole network into a more effective trade-off state between
accuracy and cost. Furthermore, we propose an Interactive Window-
based Self-Attention (IWSA), which establishes interaction between non-
overlapping regions by re-merging independent value tokens and aggre-
gating spatial information from adjacent windows. By stacking the SSA
and IWSA alternately, the Scalable Vision Transformer (ScalableViT)
achieves state-of-the-art performance on general-purpose vision tasks.
For example, ScalableViT-S outperforms Twins-SVT-S by 1.4% and
Swin-T by 1.8% on ImageNet-1K classification.

Keywords: Vision Transformer, Self-Attention Mechanism, Classifica-
tion, Detection, Semantic Segmentation

1 Introduction

Convolutional Neural Networks (CNNs) dominated the computer vision field last
few years, which attributes to their capacity in modeling realistic images from a
local to global perception. Although they have been widely applied in various vi-
sion tasks, there are still deficiencies in global visual perception. This global view
is essential for downstream tasks, such as object detection and semantic segmen-
tation. Recently, ViT [10] and its follow-ups [35,26,5,40] employed transformer
encoders to address the image task and achieved comparable performance against
their CNN counterparts because of the global receptive field. However, the global
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Fig. 1: Visualization for feature maps in the Vision Transformer. We show the fea-
ture maps after the second Transformer blocks in Window-based Self-Attention
(WSA) [5,26] and Scalable Self-Attention (SSA). The activation from WSA is
discontinuous because of a limited mapping dimension. SSA (rc ≡ 1) reduces
computational overhead while retaining a global perception, ensuring its feature
map is nearly continuous. rc ≡ 1 denotes no scaling factors in the channel dimen-
sion. SSA introduces scale factors to spatial and channel dimensions, modeling
a holistic representation and a context-oriented generalization.

perception of the Transformer entails an unaffordable computation since self-
attention (the primary operation of the Transformer) is quadratically computed
on the whole sequence. To alleviate this overhead, typical Swin transformer [26]
employed Window-based Self-Attention (WSA), which partitioned a feature map
into many non-overlapped sub-regions and enabled it to process large-scale im-
ages with linear complexity. They also proposed a novel Shifted Window-based
Self-Attention (SWSA) to compensate for losses of potential long-range depen-
dency. Twins [5] combined the WSA with Global Sub-sampled Attention (GSA)
for better performance.

To gain an insight into the WSA [5,26], we visualize feature maps after the
second block. As shown in Fig. 1, features captured by the WSA are dispersed,
and their responses incline to partial rather than object-oriented. It may at-
tribute to an invariably fixed dimension that results in limited learning ability,
thereby the final performance of the model being highly determined by the diffi-
culty of input data. To alleviate this problem, we develop a novel self-attention
mechanism, termed Scalable Self-Attention (SSA), which simultaneously intro-
duces two scaling factors (rn and rc) to spatial and channel dimensions. Namely,
SSA selectively applies these factors to query, key, and value matrices (Q, K,
and V ), ensuring the dimension is more elastic and no longer deeply bound by
the input. On the one hand, SSA aggregates redundant tokens with similar se-
mantic information to a more compact one via spatial scalability. Consequently,
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unnecessary intermediate multiplication operations are eliminated, and the com-
putational complexity is reduced significantly. In the third row of Fig. 1, we can
easily observe that spatial scalability can bring nearly contiguous visual mod-
eling for objects, but some contextual cues are still lost. Hence, on the other
hand, we expand the channel dimension to learn a more graphic representa-
tion. As depicted in the last row of Fig. 1, SSA successfully obtains complete
object activation while maintaining context-oriented generalization via channel
scalability. For instance, the contextual cues of the cat in the last column are
represented in detail. Such scaling factors also restore the output dimension to
align with the input, which makes the residual connection feasible.

Moreover, we propose an Interactive Window-based Self-Attention (IWSA)
that consists of a regular WSA and a local interactive module (LIM). The IWSA
establishes information connections by re-merging independent value tokens and
aggregating spatial information from adjacent windows. Therefore, it no longer
limits the self-attention to local windows, particularly non-overlapping windows.
Such characteristic enhances the desired global receptive field and takes good
advantage of the most significant superiority of the Transformer in a single layer.
The effectiveness of LIM for WSA is validated in Tab. 5b. To achieve a more
efficient backbone for general vision tasks, we adopt a hierarchical design [14,31]
and propose a new Vision Transformer architecture, termed ScalableViT, which
alternately arranges IWSA and SSA blocks in each stage.

Main contributions of our ScalableViT lie in two aspects:

• For the global self-attention, we propose SSA to supply context-oriented
generalization in the vanilla self-attention block, which significantly reduces
computational overhead without sacrificing contextual expressiveness.

• For the local self-attention, we design LIM to enhance the global perception
ability of WSA.

Both SSA and IWSA can model long-range dependency in a single layer instead
of stacking more self-attention layers; hence, the ScalableViT is more suitable for
visual tasks. We employ ScalableViT on several vision tasks, including image-
level classification on ImageNet [8], pixel-level object detection and instance
segmentation on COCO [25], and semantic segmentation on ADE20K [54]. Ex-
tensive experiments demonstrate that the ScalableViT outperforms other state-
of-the-art Vision Transformers with similar or less computational cost. For ex-
ample, ScalableViT-S achieves +1.4% gains against Twins-SVT-S and +1.8%
gains against Swin-T on ImageNet-1K classification.

2 Related Work

The Transformer architecture [37] has become a common template for natu-
ral language processing (NLP) tasks due to its solid global modeling capabilities
and convenient parallelization ability. Inspired by this, many researchers tried to
equip CNNs with the self-attention to modulate and augment outputs of convo-
lutions [2,47,43]. DETR [3] employed the self-attention mechanism to model re-
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lations between objects for end-to-end detection. Others [20,1,41] combined self-
attention with convolutions for full-image contextual information. Recently, the
emergence of ViT [10], DeiT [35], and a series of follow-ups [26,9,49,39,42,48,5]
proved the bright prospect of the Vision Transformer.

2.1 Vision Transformer

ViT [10] applied standard Transformer encoders to build a convolution-free im-
age classifier by decomposing the image into a sequence of non-overlapping
patches directly. Although it harvested promising results, a gap still existed
between data-hungry Transformers and top-performing CNNs [34] when only
training on the midsize ImageNet-1K [8] from scratch. In order to bridge this
gap, DeiT [35] proposed a token-based distillation procedure and a data-efficient
training strategy to optimize the Transformer effectively. Later, the follow-ups
improved different aspects of the ViT, making them more suitable for vision
tasks. T2T-ViT [49] optimized the tokenization by concatenating the neighbor-
ing tokens into one token. DynamicViT [30] pruned the tokens of less importance
in a dynamic way for a better lightweight module. Cvt [42], CeiT [48] incorpo-
rated the convolution designs into the self-attention or the FFN to enhance the
locality. CPVT [6] utilized the implicit position representation ability from con-
volutions (with zero padding) to encode the conditional position information for
inputs with the arbitrary size. Then, hierarchical pyramid structures [39,26,9,5]
were performed by progressively shrinking the number of tokens and replac-
ing the class token with the average pooling. Thus, the Transformer, supported
by multi-level features [23], can handle object detection and image segmentation
tasks conveniently. In this paper, we develop a Vision Transformer, ScalableViT,
which achieves a better accuracy and cost trade-off on visual tasks.

2.2 Local Self-Attention

The computational complexity of the self-attention mechanism is a barrier that
confines it in only downsampled feature maps or small images. Thus, several
previous studies [28,16,38,20,18] proposed decomposing the global self-attention
into much paralleled local self-attention to handle expensive computation bur-
dens. However, this local self-attention limits the receptive field that is critical to
dense predict tasks. [20,38] proposed generating the sparse attention map on a
criss-cross path to realize global interaction. [18] captured the information from
all the other positions via interlacing elements between different local windows.
HaloNet [36] used the overlapped local windows to add the interactions between
independent windows. After ViT [10] showed competitiveness, several follow-
ups [26,5,19,50] applied the self-attention within non-overlapped local windows
for linear computational complexity. To compensate for lost information, Swin
Transformer [26] introduced a novel shifted window strategy, and Twins Trans-
former [5] baked sparse global attention [39] after WSA. We design the IWSA,
which can aggregate information from a collection of discrete value tokens and
enable local self-attention to model long-range dependency in a single block.
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Fig. 2: The architecture of the ScalableViT. IW-MSA and S-MSA, the multi-head
format of IWSA and SSA, are organized alternately in each stage. A PEG [6] is
placed between two blocks in the front of each stage to encode implicit position
information dynamically.

3 Method

In this section, we elaborately introduce the architecture of ScalableViT and
mainly focus on SSA and IWSA mechanisms. SSA simultaneously introduces
different scale factors into spatial and channel dimensions to maintain context-
oriented generalization while reducing computational overhead. IWSA enhances
the receptive field of local self-attention by aggregating information from a set of
discrete value tokens. Both have linear computational complexity and can learn
long-range dependency in a single layer.

3.1 Overall Architecture

The architecture of ScalableViT is illustrated in Fig. 2. For an input image with
size H×W ×3, a convolutional patch embedding layer (7×7, stride 4) is used to
obtain a collection of tokens (H4 × W

4 ) and project the channel dimension to C.
Then, these initial tokens will pass through four stages which contain a series of
Transformer blocks. Between two adjacent stages, another convolutional patch
embedding layer (3×3, stride 2) is utilized to merge tokens and double the chan-
nel dimension. For the ith stage, there are H

2i+1 × W
2i+1 input tokens with 2i−1C

channels and Li Transformer blocks. As a result, the quantity of tokens will
eventually be reduced to H

32 × W
32 . This architecture enables us to obtain a hier-

archical representation similar to the typical backbones based on CNNs [14,31].
This merit allows ScalableViT to naturally migrate to various vision tasks, such
as object detection and segmentation. In each stage, we devise an alternate ar-
rangement of IW-MSA and S-MSA blocks to organize the topological structure.
In the front of each stage, a position encoding generator (PEG) [6] is inserted
between two Transformer blocks to generate position embedding dynamically.
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3.2 Scalable Self-Attention

Self-attention is a critical mechanism in the Transformer, and the vanilla self-
attention can be calculated as:

Z = A(X)V (X) = Softmax(
Q(X)K(X)T√

dk
)V (X), (1)

where A(X) is the attention matrix of the input X; Q(X),K(X), V (X) ∈ RN×C

are the query, key, and value matrices; dk is the channel dimension of query or
key matrix; N is the number of tokens in each matrix, and C is the channel di-
mension. The original self-attention mechanism obtains a global receptive field by
establishing associations between all input tokens, which is a vital advantage of
the Transformer over CNNs. However, it has quadratic computational overhead
with N , leading to inefficiency in the intermediate multiplication operations.

Generally, there is much homologous information in natural images, but
vanilla self-attention still calculates their similarity. Notably, not all information
is necessary to calculate self-attention in the Vision Transformer. For example,
similar background tokens should be aggregated as one representative token to
attend to other foreground tokens. Namely, the dimension of Q(X), K(X), and
V (X) should not be bounded with the input X. More importantly, the fixed
dimension results in limited learning ability. Thus, we develop the Scalable Self-
Attention (SSA), where two scaling factors (rn and rc) are introduced to spatial
and channel dimensions, respectively, resulting a more efficient intermediate cal-
culation than the vanilla one. As illustrated in Fig. 3, the spatial dimension N
and channel dimension C are selectively scaled to N×rn and C×rc, respectively,
by three transformation functions fq(·), fk(·), and fv(·). These scaling factors
can also restore the output dimension to align with the input, making the subse-
quent FFN layers and residual connections feasible. As a result, the intermediate
dimension is more elastic and no longer deeply bound with the input X. The
model can reap context-oriented generalization while dwindling computational
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overhead significantly. SSA can be naturally written as:

Z ′ = A′(X)V ′(X) = Softmax(
Q′(X)K ′(X)

T√
d′k

)V ′(X), (2)

Q′(X) = fq(X), K ′(X) = fk(X), V ′(X) = fv(V ), (3)

where Q′(X) ∈ RN×Crc ,K ′(X) ∈ RNrn×Crc , V ′(X) ∈ RNrn×C are the scaled
query, key and value matrices of the input X ∈ RH×W×C ; A′(X) ∈ RN×Nrn is
the scaled attention matrix; Z ′ is the weighted sum of V ′(X). The transforma-
tion fq(·) scales the channel dimension of query from C to Crc . fk(·) is the scaling
function for key, which scales the spatial dimension from N to Nrn while scaling
the channel dimension from C to Crc . fv(·) is the scaling function for value,
which scales the spatial dimension from N to Nrn . Hence, some unnecessary in-
termediate multiplication is decreased significantly. The computation complexity
of the proposed SSA is equal to O(NNrnC +NNrnCrc) that is linear with the
input size (N = H×W ). For utility and briefness, three transformations are op-
erated by convolutions and cooperates with linear projections to get the scaled
query, key, and value matrices. The efficient SSA does not change the size of Z
and can be expanded to the Scalable Multi-Head Self-Attention (S-MSA) easily.

More importantly, the introduced spatial and channel scalability can bring
context-oriented generalization (see Fig. 1). If only spatial scalability is intro-
duced (rc ≡ 1), there would realize nearly contiguous visual modeling for objects
but a lack of critical graphic representation. When further introducing channel
scalability, SSA can successfully maintain contextual cues and obtain complete
object activation, which is essential in visual tasks. The values of these two scal-
ing factors vary with model configurations and different network stages. As the
network gradually deepens, the quantity of tokens shrinks, and the degree of
redundancy is also dropped. Thus, rn is largen with the stage depth. Similarly,
the channel dimension does not always mismatch with spatial dimension in the
self-attention operation. Thus, we set rc ≥ 1 in ScalableViT-S and ScalableViT-
B. Because of a too-large channel dimension, we set rc ≤ 1 in ScalableViT-L.
Details about two scale factors are displayed in Table 1.

3.3 Interactive Window-based Self-Attention

Besides the efficient self-attention [39], earlier researches have developed the local
self-attention [26,5] to avoid the quadratic computational complexity with the
number of tokens. For example, WSA divides an image (H×W×C) into multiple
partial windows which contains M ×M tokens. Then, the self-attention would
be calculated in every isolated window and produce a set of discrete outputs

{Zn}
H
M ×W

M
n=1 , where Zn can be calculated as:

Zn = An(Xn)Vn(Xn) = Softmax(
Qn(Xn)Kn(Xn)

T

√
dk

)Vn(Xn), (4)

in whichXn ∈ ΩM×M×C
n is the partial window field;Qn(Xn),Kn(Xn), Vn(Xn) ∈

RM2×C are the query, key, and value matrices of the discrete window Xn,
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respectively. dk is equal to the channel dimension of discrete query/key tokens.

Finally, a collection of discrete {Zn}
H
M ×W

M
n=1 is merged back to Z ∈ RN×C . Thus,

for an image, the computational complexity of attention would be reduced from
O(2H2W 2C) to O(2M2HWC). The WSA can be suitable for various vision
tasks that require high-resolution input due to its linear complexity.

However, such computationally efficient WSA yields a feature map with an
integrated shape but isolated activation (see Fig. 1), which ascribed to the
missed global receptive field in a single layer. This is far from the initial aims
of self-attention. To alleviate above problem, we propose Interactive Window-
based Self-Attention (IWSA) that incorporates a local interactive module (LIM)
into WSA, as illustrated in Fig. 4. After getting a collection of discrete values

{Vn(Xn)}
H
M ×W

M
n=1 , the LIM reshapes them into M ×M ×C and merges them into

a shape-integrated value map V ∈ RH×W×C . Subsequently, a function F(x) is
employed to establish marriages and connections between adjacent Vn(Xn)s. As
a result, the output Y = F(V ) is an integrated feature map with global infor-
mation. Finally, this feature map is added on Z as the final output Z ′. Without
loss of generality, the IWSA is calculated as:

Z ′ = Z + F(V ), (5)

where Z ∈ RN×C is merged by a set of {Zn}
H
M ×W

M
n=1 . In order to be implemented

friendly, a depth-wise convolution with zero padding is employed to take the place
of function F(x). If the kernel size of this depth-wise convolution is k × k (set
to 3 by default), the computational cost from the LIM is negligible in practice.
Additionally, [21] demonstrated that the convolution with zero padding could
implicitly encode position information through experiments. Thus, IWSA allows
self-attention to benefit from the translation invariance. Furthermore, IWSA
can be easily expanded to Interactive Window-based Multi-head Self-Attention
(IW-MSA) format easily if calculated in different heads.

CoaT [46] also introduced a depth-wise convolution into self-attention. How-
ever, they only considered the convolution as a positional encoding method and
inserted it deeply into the calculation. If this convolution is expanded into the
WSA, it would be limited in the discrete Vn(Xn), which is denoted as local en-
hanced module (LEM). Differently, we regard our LIM as a matchmaker, which is
applied on the spliced value map V and parallels with self-attention. By making
the sufficient ablation study in Section 4.4, we demonstrate that LIM is capable
of delivering stable improvements, especially for downstream tasks.

3.4 Position Encoding

Besides the position information introduced by LIM, we utilize the positional en-
coding generator (PEG) [6], composed of a convolution layer with fixed weights,
to acquire implicit positional information. As illustrated in Fig. 2, it is plugged
between two consecutive Transformer blocks, with only one in the front of each
stage. After the PEG, input tokens are sent to subsequent blocks where position
bias could enable the Transformer to realize the input permutation.
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Table 1: Detailed configurations of ScalableViT series. rc and rn are scale factors
for the channel and the spatial dimensions, respectively. ’#Blocks’ and ’#Heads’
refer to the number of blocks ([L1, L2, L3, L4]) and heads in four stages, respec-
tively. ’#Channels’ refers to the channel dimension of the first stage.

Models #Channels #Blocks #Heads rc rn

ScalableViT-S 64 [2,2,20,2] [2,4,8,16] [1.25,1.25,1.25,1.0] [ 1
64
, 1

16
, 1

4
, 1]

ScalableViT-B 96 [2,2,14,6] [3,6,12,24] [2.0,1.25,1.25,1.0] [ 1
64
, 1

16
, 1

4
, 1]

ScalableViT-L 128 [2,6,12,4] [4,8,16,32] [0.25,0.5,1.0,1.0] [ 1
64
, 1

16
, 1

4
, 1]

3.5 Architecture Variants

In order to fairly compare with other models under similar computation com-
plexity, we set three models: ScalableViT-S, ScalableViT-B, and ScalableViT-L.
The detailed configurations are provided in Table 1, where rc and rn denote
expansion or reduction factors for channel and spatial dimensions, respectively,
as described in Section 3.2. Due to the varying representational capability, we
set different rc for three models. Additionally, the number of blocks, channels,
and heads varies with the computational cost.

4 Experiments

In the following, we compare the proposed model with other state-of-the-art
works on ImageNet-1K [8], COCO [25], and ADE20K [54]. Then, we conduct
ablation studies on the upgraded parts to verify their effectiveness.

4.1 Image Classification on ImageNet-1K

Settings. Image classification experiments are conducted on the ImageNet-
1K [8] dataset. All settings mainly follow DeiT [35]. During training, we apply
data augmentation and regularization strategies in [35]. We employ the AdamW
optimizer [27] to train models for 300 epochs from scratch. The learning rate is
set to 0.001 initially and varies with the cosine scheduler. The global batchsize
is set to 1024 on 8 V100 GPUs. During testing on the validation set, the shorter
side of an input image is first resized to 256, and a center crop of 224 × 224 is
used to evaluate the classification accuracy.
Result. Classification results on ImageNet-1K are reported in Table 2, where all
models are divided into small (around 4G), base (around 9G), and large (around
15G) levels according to computation complexity (FLOPs). ScalableViT-S with a
two-layer head outperforms comparable models (1.4% better than Twins-SVT-
S, and 1.8% better than Swin-T). Moreover, it can even approach or exceed
other base models. For the base level, ScalableViT-B surpasses Twins-SVT-B
by 0.9% and SWin-S by 1.1% with similar FLOPs. ScalableViT-L also achieves
a prominent accuracy-cost trade-off. Additionally, our ScalableViT outperforms
the EfficientNet by 0.2%, 0.5%, and 0.4% under three magnitude receptively.
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Table 2: Comparison with different state-of-the-art backbones on ImageNet-1K
classification. Except for EfficientNet, other models are trained and evaluated
on 224× 224 input size. Top-1 refers to top-1 accuracy (%).

Method #Param. FLOPs Top-1

ConvNet

RegNetY-4G [29] 21M 4.0G 80.0
RegNetY-8G [29] 39M 8.0G 81.7
RegNetY-16G [29] 84M 16.0G 82.9
EfficientNet-B4 [34] 19M 4.2G 82.9
EfficientNet-B5 [34] 30M 9.9G 83.6
EfficientNet-B6 [34] 43M 19.0G 84.0

Transformer

DeiT-Small/16 [35] 22M 4.6G 79.9
T2T-ViT-14 [49] 22M 5.2G 81.5
TNT-S [12] 24M 5.2G 81.3
CoaT-Lite(S) [46] 20M 4.0G 81.9
PVT-Small [39] 25M 3.8G 79.8
Swin-T [26] 29M 4.5G 81.3
CvT-13 [42] 20M 4.5G 81.6
Twins-SVT-S [5] 24M 2.9G 81.7
CrossFormer-S [40] 31M 4.9G 82.5
ScalableViT-S(ours) 32M 4.2G 83.1

Method #Param. FLOPs Top-1

Transformer

T2T-ViT-19 [49] 39M 8.9G 81.9
CoaT(S) [46] 22M 12.6G 82.1
CoaT-Lite(M) [46] 45M 9.8G 83.6
PVT-Medium [39] 44M 6.7G 81.2
Swin-S [26] 50M 8.7G 83.0
CvT-21 [42] 32M 7.1G 82.5
Twins-SVT-B [5] 56M 8.6G 83.2
CrossFormer-B [40] 52M 9.2G 83.4
ScalableViT-B(ours) 81M 8.6G 84.1

Deit-Base/16 [35] 86M 17.6G 81.8
T2T-ViT-24 [49] 64M 14.1G 82.3
TNT-B [12] 66M 14.1G 82.8
PVT-Large [39] 61M 9.8G 81.7
Swin-B [26] 88M 15.4G 83.3
Twins-SVT-L [5] 99M 15.1G 83.7
CrossFormer-L [40] 92M 16.1G 84.0
ScalableViT-L(ours) 104M 14.7G 84.4

4.2 Object Detection on COCO

Settings. Object detection experiments are conducted on COCO 2017 [25]
dataset. We verify the model effectiveness on RetinaNet [24] and Mask R-
CNN [13] detection frameworks using the MMDetection [4]. Before training, we
initialize the backbone with the weight pre-trained on ImageNet-1K, FPN with
Xavier [11] scheme, and other new layers with Normal scheme (std = 0.01). All
models utilize the same settings as [5]: AdamW [27] optimizer, 1× (12 epochs),
and 3× (36 epochs) schedules with a global batchsize of 16 on 8 GPUs. For the
1× schedule, the short side of images is resized to 800 pixels, and the long side
is never more than 1333 pixels. The learning rate is declined at the 8th and
11th epoch with a decay rate of 0.1. For the 3× schedule, we adopt the multi-
scale training, which randomly resizes the short side of images within the range
of [480, 800] while keeping the longer side at most 1333. The learning rate is
declined at the 27th and 33rd with a decay rate of 0.1.

Result. We present results of RetinaNet and Mask R-CNN frameworks in Ta-
ble 3, where APb and APm refer to box mAP and mask mAP, respectively.
For object detection with RetinaNet, ScalableViT performs a notable advantage
against its CNN and Transformer counterparts. With the 1× schedule, our Scal-
ableViT brings 7.3-8.9 APb against ResNet at comparable settings. Compared
with the popular Swin and Twins Transformers, our ScalableViT performs 3.5-
3.7 APb and 0.5-2.2 APb improvements, respectively. With the 3× schedule,
our ScalableViT still achieves competitive performance. For Mask R-CNN, our
ScalableViT-S outperforms ResNet-50 by 7.8 APb and 7.3 APm with the 1×
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Table 3: Results on COCO object detection using the RetinaNet [24] and Mask
R-CNN [13] framework. 1× refers to 12 epochs, and 3× refers to 36 epochs. MS
means multi-scale training. APb and APm denotes box mAP and mask mAP,
respectively. FLOPs are measured at resolution 800× 1280.

Backbone
#Param. FLOPs RetinaNet 1× RetinaNet 3× + MS

(M) (G) APb APb
50 APb

75 APb
S APb

M APb
L APb APb

50 APb
75 APb

S APb
M APb

L

ResNet50 [14] 38 239 36.3 55.3 38.6 19.3 40.0 48.8 39.0 58.4 41.8 22.4 42.8 51.6
PVT-Small [39] 34 226 40.4 61.3 43.0 25.0 42.9 55.7 42.2 62.7 45.0 26.2 45.2 57.2
Swin-T [26] 39 245 41.5 62.1 44.2 25.1 44.9 55.5 43.9 64.8 47.1 28.4 47.2 57.8
Twins-SVT-S [5] 34 210 43.0 64.2 46.3 28.0 46.4 57.5 45.6 67.1 48.6 29.8 49.3 60.0
CrossFormer-S [40] 41 272 44.4 65.8 47.4 28.2 48.4 59.4 — — — — — —
ScalableViT-S(ours) 36 238 45.2 66.5 48.4 29.2 49.1 60.3 47.8 69.2 51.2 31.4 51.5 63.4

ResNet101 [14] 58 315 38.5 57.8 41.2 21.4 42.6 51.1 40.9 60.1 44.0 23.7 45.0 53.8
PVT-Medium [39] 54 283 41.9 63.1 44.3 25.0 44.9 57.6 43.2 63.8 46.1 27.3 46.3 58.9
Swin-S [26] 60 335 44.5 65.7 47.5 27.4 48.0 59.9 46.3 67.4 49.8 31.1 50.3 60.9
Twins-SVT-B [5] 67 326 45.3 66.7 48.1 28.5 48.9 60.6 46.9 68.0 50.2 31.7 50.3 61.8
CrossFormer-B [40] 62 389 46.2 67.8 49.5 30.1 49.9 61.8 — — — — — —
ScalableViT-B(ours) 85 330 45.8 67.3 49.2 29.9 49.5 61.0 48.0 69.3 51.4 32.8 51.6 62.4

Backbone
#Param. FLOPs Mask R-CNN 1× Mask R-CNN 3× + MS

(M) (G) APb APb
50 APb

75 APm APm
50 APm

75 APb APb
50 APb

75 APm APm
50 APm

75

ResNet50 [14] 44 260 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small [39] 44 245 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T [26] 48 264 42.2 64.4 46.2 39.1 64.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
Twins-SVT-S [5] 44 228 43.4 66.0 47.3 40.3 63.2 43.4 46.8 69.2 51.2 42.6 66.3 45.8
CoaT-Lite(S) [46] 40 — 45.2 — — 40.7 — — 45.7 — — 41.1 — —
CrossFormer-S [40] 50 301 45.4 68.0 49.7 41.4 64.8 44.6 — — — — — —
ScalableViT-S(ours) 46 256 45.8 67.6 50.0 41.7 64.7 44.8 48.7 70.1 53.6 43.6 67.2 47.2

ResNet101 [14] 63 336 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
PVT-Medium [39] 64 302 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Swin-S [26] 69 354 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6
Twins-SVT-B [5] 76 340 45.2 67.6 49.3 41.5 64.5 44.8 48.0 69.5 52.7 43.0 66.8 46.6
CoaT(S) [46] 42 — 46.5 — — 41.8 — — 49.0 — — 43.7 — —
CrossFormer-B [40] 72 408 47.2 69.9 51.8 42.7 66.6 46.2 — — — — — —
ScalableViT-B(ours) 95 349 46.8 68.7 51.5 42.5 65.8 45.9 49.0 70.3 53.6 43.8 67.4 47.5

schedule. ScalableViT-S achieves 3.6 APb and 2.6 APm gains than Swin-T. With
the 3× schedule, ScalableViT-S brings 7.7 APb and 6.5 APm against ResNet-50.
Similarly, it also surpasses Swin-T and Twins-SVT-S Transformers. Under base
level, there is also a similar improvement, demonstrating its stronger context-
oriented generalization. Additionally, Fig. 5 depicts some qualitative object de-
tection and instance segmentation results from ScalableViT-S-based RetinaNet
and Mask R-CNN, which show that contextual representation from the backbone
enables the model to detect objects better.

4.3 Semantic Segmentation on ADE20K

Settings. Semantic segmentation experiments are conducted on the challenging
ADE20K [54] dataset. We use the typical Semantic FPN [22] and the Uper-
Net [44] as segmentation frameworks to evaluate our models. We use the MM-
Segmentation [7] to implement all related experiments, and the settings follow
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(a)

(b)

(c)

Fig. 5: Qualitative results based on ScalableViT-S. (a), (b) and (c) are yielded
by RetinaNet [24], Mask R-CNN [13], and Semantic FPN [22], respectively.

[5,26,39]. For the Semantic FPN, we train 80K iterations with a batch size 16
on 4 GPUs. For the UperNet, we train 160K iterations with a batch size 16 on
8 GPUs. During training, we first resize the short side of input images to 512
pixels, and the long side is never more than 2048 pixels, then they are randomly
cropped to 512×512. During testing, we resize input images as the training phase
but without cropping. We also use the test time augmentation for UperNet, in-
cluding multi-scale test ([0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× resolution) and flip.
Result. Table 4 reports the segmentation results. For the Semantic FPN, our
ScalableViT outperforms Swin Transformer by +3.4 mIoU, +3.2 mIoU, and +3.4
mIoU, respectively, under three FLOPs levels. Compared with CrossFormer-
S [40], ScalableViT-S performs a modest mIoU but has a fewer computation.
When equipped into the UperNet, the ScalableViT achieves +4 mIoU, +1.9
mIoU, and +1.6 mIoU gains than Swin Transformer under different model
sizes. The same competitive results are achieved when test time augmentation is
adopted. In addition, ScalableViT-S outperforms CrossFormer-S by +0.9 mIoU
and achieves comparable performance on the base and large size. Fig. 5(c) shows
some qualitative results from ScalableViT-S-based Semantic FPN on validation
split. These results indicate that the ScalableViT can obtain high-quality se-
mantic segmentation results under contextual-oriented generalization.

4.4 Ablation Study

Analysis for Self-Attention mechanisms. Our ScalableViT contains two im-
portant designs: SSA and IWSA. We ablate their benefits in Table 5a. Firstly,
all attention modules in ScalableViT-S are replaced with the regular window-
based self-attention (WSA). Although WSA achieves 82.4% top-1 accuracy, the
dispersed feature (see Fig. 1) hinders it from better performance on the down-
stream visual task. Then, we substituted all attention modules with our IWSA
and SSA, respectively. Both of them outperformWSA 0.4% top-1 accuracy. More



ScalableViT 13

Table 4: Results on ADE20K segmentation using the Semantic FPN [22] and
UperNet [44] framework. FLOPs are measured at resolution 512 × 2048. MS
refers to the test time augmentation, including flip and multi-scale test.

Backbone
Semantic FPN 80k UperNet 160k

#Param. FLOPs mIoU(%) #Param. FLOPs mIoU/MS mIoU(%)

ResNet50 [14] 29M 183G 36.7 — — —/—
PVT-Small [39] 28M 161G 39.8 — — —/—
Swin-T [26] 32M 182G 41.5 60M 945G 44.5/45.8
Twins-SVT-S [5] 28M 144G 43.2 54M 901G 46.2/47.1
CrossFormer-S [40] 34M 221G 46.0 62M 980G 47.6/48.4
ScalableViT-S(ours) 30M 174G 44.9 57M 931G 48.5/49.4

ResNet101 [14] 48M 260G 38.8 86M 1092G —/44.9
PVT-Medium [39] 48M 219G 41.6 — — —/—
Swin-S [26] 53M 274G 45.2 81M 1038G 47.6/49.5
Twins-SVT-B [5] 60M 261G 45.3 89M 1020G 47.7/48.9
CrossFormer-B [40] 56M 331G 47.7 84M 1090G 49.7/50.6
ScalableViT-B(ours) 79M 270G 48.4 107M 1029G 49.5/50.4

ResNeXt101-64×4d [45] 86M — 40.2 — — —/—
PVT-Large [39] 65M 283G 42.1 — — —/—
Swin-B [26] 91M 422G 46.0 121M 1188G 48.1/49.7
Twins-SVT-L [5] 104M 404G 46.7 133M 1164G 48.8/50.2
CrossFormer-L [40] 95M 497G 48.7 126M 1258G 50.4/51.4
ScalableViT-L(ours) 105M 402G 49.4 135M 1162G 49.8/50.7

importantly, they bring +4.6 mIoU and +5.5 mIoU improvements on ADE20K
because of the ability modeling long-range dependency. With spatial scalability
(rc ≡ 1), SSA only achieve 82.6% top-1 accuracy and 43.7 mIoU. Thus, the
context-oriented generalization from the cooperation between spatial and chan-
nel scalability plays a critical role in visual tasks. Additionally, we examine the
topology by rearranging IWSA and SSA. Results demonstrate that prioritizing
IWSA followed by SSA performs best. We also compare IWSA with SWSA [26]
in ScalableViT, where our IWSA is more appropriate than SWSA.
Speed analysis. Following [26], we measure throughput of the ScalableViT-S
on single 3090 GPU with a batch size of 64 in Table 6. ScalableViT-S achieves
859.0 img/s, which perform better speed-accuracy trade-offs than Swin-S.
Effectiveness of Local Interactive Module. We examine the effectiveness
of LIM in Table 5b. The ScalableViT-S without position encoding generator
(PEG), locally enhanced module (LEM), or LIM is regarded as a baseline model
which achieves 82.7% top-1 accuracy on ImageNet. Then, three modules are
inserted and yield +0.2%, +0.1%, and +0.3% gains than baseline, respectively.
It demonstrates that the reasonable convolution can help the model perform
better. Due to the window connection, LIM outperforms LEM by +0.2% top-1
accuracy, proving the significance of the information interaction. Additionally,
we combine PEG with LEM or LIM, whose results are better than only using
a single module. Note that the combination of PEG and LIM outperforms the
PEG and LEM under the same overhead. LIM aims to bring global perception
into the single Transformer block. Its effectiveness is greatly demonstrated on
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Table 5: Ablation study for different self-attention mechanisms and LIM using
ScalableViT-S. Top-1 refers to top-1 accuracy (%) on ImageNet-1K. Semantic
segmentation results are yielded from Semantic FPN on ADE20K.

(a) Analysis for different self-attention
mechanisms.

Method #Param. FLOPs Top-1 mIoU(%)

WSA 30M 4.3G 82.4 38.9
IWSA 30M 4.3G 82.9 43.5
SSA 34M 4.1G 82.9 44.4

SSA (rc ≡ 1) 32M 3.9G 82.6 43.7
SWSA & SSA 32M 4.2G 82.9 —
SSA & IWSA 32M 4.2G 83.0 —
IWSA & SSA 32M 4.2G 83.1 44.9

(b) Analysis for local interactive module and
positional encoding generator.

PEG LEM LIM #Param. FLOPs Top-1 mIoU(%)

32M 4.2G 82.7 41.7
✓ 32M 4.2G 82.9 43.2

✓ 32M 4.2G 82.8 —
✓ 32M 4.2G 83.0 43.7

✓ ✓ 32M 4.2G 83.0 —
✓ ✓ 32M 4.2G 83.1 44.9

Table 6: Comparison speed with state-of-the-art models.

Method #Param. FLOPs Top-1 throughput(img/s)

Swin-T [26] 29M 4.5G 81.3 975.0
Swin-S [26] 50M 8.7G 83.0 589.2

CrossFormer-S [40] 31M 4.9G 82.5 859.0
ScalableViT-S(ours) 32M 4.2G 83.1 832.9

downstream tasks. Using Semantic FPN with ScalableViT-S on ADE20K, LIM
obtains +2.0 mIoU, and associating PEG with LIM brings +3.2 mIoU gains.

5 Conclusion

In this paper, we have presented a Vision Transformer backbone named Scal-
ableViT, composed of two highly effective self-attention mechanisms (SSA and
IWSA). SSA employs two cooperated scaling factors in spatial and channel di-
mensions for context-oriented generalization, which maintains more contextual
cues and learns graphic representations. IWSA develops a local interactive mod-
ule to establish information connections between independent windows. Both
of them owns the capability to model long-range dependency in a single layer.
The proposed ScalableViT alternately stakes these two self-attention modules.
It pushes the whole framework into a more effective trade-off state and achieves
state-of-the-art performance on various vision tasks.
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Fig. 6: Interactive Window-based Self-Attention (IWSA). Besides the proposed
LIM, other parts compose the WSA. The LIM extracts a set of discrete value
matrices {V1, V2, V3, V4} from WSA and merges them via a fusion function F .
The output Y is added on Z for an output Z ′ with information interaction.

A Additional Analyses for IWSA

As shown in Fig. 6, IWSA is composed of a window-based self-attention (WSA)
and a local interactive module (LIM). WSA splits the global self-attention into
many limited windows and yields a collection of discrete value matrices. LIM
build connections between these value matrices through a fusion function F . In
practice, this function is replaced with a 3×3 depth-wise convolution. Addition-
ally, WSA can be viewed as a 7 × 7 depth-wise convolution with an adaptive
weight. Thus, F brings information exchange through a kind of interleaving ef-
fect (illustrated by yellow squares in Fig. 6). This parallel stagger makes IWSA
realize a global receptive field in a single layer.

In Table 7, we compare the LIM and the LEM on the ADE20K [54] us-
ing Semantic FPN [22] framework. All settings are recorded in the Section C.
ScalableViT-S with the LIM achieves +3.8 mIoU than the LEM under the same
overhead because IWSA can model the long-range dependency in single layer.
This result also proves that the global receptive field plays a more critical role
on the downstream vision task. Moreover, the LIM can be expanded to other
window-based self-attention with different window division styles.

Table 7: LIM vs. LEM on ADE20K using Semantic FPN. #Param. refers to
total parameters of Semantic FPN based on ScalableViT-S backbone. FLOPs
are measured at resolution 512× 2048.

Model #Param. FLOPs Top-1 mIoU(%)

ScalableViT-S w. LEM 30M 174G 83.0 41.1
ScalableViT-S w. LIM 30M 174G 83.1 44.9
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WSA
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(ours)

(a) (b) (c) (d)

Fig. 7: Visualization for feature maps of other blocks. (b), (c), and (d) are output
features of the 2nd, 4th, and 24th blocks, respectively.

B Comparing visualizations from other blocks

We visualize the feature maps after the 2nd, 4th, and 24th blocks in Figure 7. In
the 2nd and 4th blocks, the WSA focuses on local regions, especially the ears and
nose. In the latter 24th block, the WSA attends to contextual information but
losses some semantic cues. Since feature aggregation from a large downsampling
ratio (16) causes the foreground and background to be poorly separated. By
contrast, the SSA can retain a trail of details although the feature map of the
later block are not as continuous as the earlier ones.

C More Implementary Details

Classification. The classification settings mainly follow DeiT [35]. All variants
are trained under a resolution of 224 × 224. During training from scratch, we
employ the AdamW optimizer [27] with a weight decay of 0.05 and a momentum
of 0.9 to train models for 300 epochs. The learning rate is set to 0.001 initially
and varies with the cosine scheduler, where a 5-epochs linear warm-up is used to
stabilize training. The global batchsize is set to 1024 on 8 V100 GPUs. Moreover,
we apply data augmentations and regularizations, including random cropping,
random horizontal flipping [32], mixup [52], CutMix [51], random erasing [53],
label-smoothing [33], stochastic depth [17], and repeated augmentation [15]. For
stochastic depth augmentation, we set the drop rate to 0.2, 0.5, and 0.5 for
ScalableViT-S, ScalableViT-B, and ScalableViT-L, respectively. During testing
on the validation set, the shorter side of an input image is first resized to 256,
and a center crop of 224 × 224 is used to evaluate the classification accuracy.

Object Detection. We adopt RetinaNet [24] and Mask R-CNN [13] detection
frameworks on COCO [25] that contains 118K training images and 5K validation
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Table 8: Settings of the initial learning rate and weight decay.

Model #lr scheduler learning rate weight decay

Object Detection

RetinaNet(1×) Multi-step 1× 10−4 1× 10−4

RetinaNet(3×) Multi-step 1× 10−4 5× 10−2

Mask R-CNN(1×) Multi-step 2× 10−4 1× 10−4

Mask R-CNN(3×) Multi-step 1× 10−4 5× 10−2

Semantic Segmentation

Semantic FPN Polynomial 1× 10−4 1× 10−4

UperNet Polynomial 6× 10−5 1× 10−2

images. Before training, we initialize the backbone with the weight pre-trained on
ImageNet-1K, FPN with Xavier [11] scheme, and other new layers with Normal
scheme (std = 0.01). All models utilize AdamW [27] optimizer, 500-iteration
warm-up, 1× (12 epochs), and 3× (36 epochs) schedule with a global batch
size of 16 on 8 GPUs. Settings of initial learning rate and weight decay are
shown in Table 8. For 1× schedule, the short side of training images is resized to
800 pixels, and the long side is never more than 1333 pixels. The learning rate is
declined at the 8th and 11th epoch with a decay rate of 0.1. For the 3× schedule,
we adopt the multi-scale training, which randomly resizes the short side of the
input images within the range of [480, 800] while keeping the longer side at most
1333. The learning rate is declined at the 27th and 33rd with a decay rate of
0.1. When testing, the image size is set as the same as the 1× schedule.

Semantic Segmentation. Semantic segmentation experiments are conducted
on the challenging ADE20K [54], with 20K images for training and 2K images for
validation. We use the typical Semantic FPN [22] and UperNet [44] as segmen-
tation frameworks to evaluate our models. Following the common practice, we
use the MMSegmentation [7] to implement all related experiments. We employ
the AdamW [27] to optimize two models. The initial learning rate and weight
decay are shown in Table 8. For the Semantic FPN, we train 80K iterations with
a batch size 16 on 4 GPUs. The polynomial policy schedules the learning rate
with a power of 0.9. For the UperNet, we train 160K iterations with a batch size
16 on 8 GPUs. The polynomial policy schedules the learning rate with a power
of 1.0. During training, we first resize the short side of input images to 512 pix-
els, and the long side is never more than 2048 pixels, then randomly crop to
512×512. During testing, we resize input images the same as the training phase
but without cropping. We also use the test time augmentation for UperNet, in-
cluding multi-scale test ([0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× resolution) and flip, for
better results.
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